BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN, VOL. 50 (9), 2503—2504 (1977)

Alicyclic Terpenoids from Cyclocitryl Phenyl Sulfides. V. A Synthesis of Ferruginol

Sigeru Torii,* Kenji Uneyama, and Kazuhide Hamada

Department of Industrial Chemistry, School of Engineering, Okayama University, Okayama 700

(Received April 30, 1977)

Synopsis. Ferruginol a precursor for taxodione synthesis, was prepared by the coupling of C(10) units between 2-(phenylsulfonylmethyl)-1,3,3-trimethylcyclohexane and 3-isopropyl-4-methoxybenzyl bromide followed by desulfonation and acid-catalyzed cyclization.

Taxodione (1), a tumor-inhibitory diterpene, has been isolated from $Taxodium\ distichum\ Rich\ (Taxodiaceae)$ by Kupchan $et\ al.^{2)}$ Because of its significant tumor-inhibitory activity, its synthesis attracted our attention. Mori $et\ al.$ succeeded the transformation of podocarpic acid into 1 via ferruginol (2) by several modifications on B and C rings.³⁾ Matsumoto $et\ al.$ prepared 1 starting from 2,3-dimethoxyisopropylbenzene by $C \rightarrow B \rightarrow A$ ring construction^{4a)} and also from abieta-8,11,13-trienoate (3).^{4b)} Recently, the same authors reported a new route to 1 from methyl ether of $2.^{5)}$

Considering the synthetic design of 1, ferruginol (2) must be one of the desirable precursors of 1 and therefore should be prepared by a simple and practical method, since the reported syntheses involved many steps and unsatisfactory yields.⁶⁾ Here, we describe an efficient synthesis of 2 by the coupling of C(10) units between 2-(phenylsulfonylmethyl)-1,3,3-trimethylcyclohexene (4) and 3-isopropyl-4-methoxybenzyl bromide followed by desulfonation and acid-catalyzed cyclization.

The sulfone, **4**, is a synthon of cyclocitral and can react effectively with carbonyls, halides, and epoxides⁷⁾ as a nucleophile. Thus, the reaction of **4** with 3-iso-propyl-4-methoxybenzyl bromide afforded **5** in 92%

yield on treatment with butyllithium in THF at -70 C°. Desulfonation of **5** was accomplished selectively in 80% yield, without reducing the anisole ring, by the action of potassium in liquid ammonia at -65 °C. Cyclization of **6** thus obtained was performed quantitatively by stirring in AcOH-H₂SO₄ (9:1) to afford **7** as a mixture (6:4) of cis-**7a** and trans-**7b**. The isomers were separated by VPC and identified spectroscopically with those reported.⁸⁾ Demethylation of trans-**7b** with boron tribromide in dichloromethane gave **2** as a sole product. The spectral data of **2** was consistent with those reported.^{3,6g)}

Experimental

Melting point is uncorrected. IR spectra were determined with a JASCO IRA-1 infrared spectrophotometer. NMR spectra were obtained at 100 MHz with a JEOL FX-100 spectrometer and the chemical shift values are expressed in δ value (ppm) relative to Me₄Si in CDCl₃. The mass spectra were determined at 70 eV with a Finnigan 3300F.

2-[1-Phenylsulfonyl-2-(3-isopropyl-4-methoxyphenyl)ethyl]-1,3,3trimethylcyclohexane (5). To a solution of 181 mg (0.65 mmol) of 4 in 2 ml of dry THF was added 0.63 ml (0.98 mmol) of BuLi-ether at -70 °C under N₂. After 5 min tsirring, the reaction mixture was treated with 3-isopropyl-4-methoxybenzyl bromide (221 mg, 0.91 mmol) dissolved in 2 ml of dry THF and stirred at -70 °C for 2 h. After adding 2 ml of saturated NH₄Cl, the organic substances were extracted three times with ethyl acetate. The combined extracts were washed with saturated NaCl, dried (Na₂SO₄), and concentrated in vacuo. The residue was chromatographed (SiO₂, benzene-AcOEt/10:1) to afford 5 (359 mg, 92%) as colorless crystals: mp 116—117 °C; IR (Nujol) 1506 (Ar), 1306, 1156 (SO₂) cm⁻¹; NMR (CDCl₃) δ 7.82— 7.30 (5H, m, $ArSO_2$), 6.80—6.52 (3H, m, Ar), 3.98 (1H, dd, J=6 and 8 Hz, $CHSO_2$), 3.75 (3H, s, CH_3O), 3.55— 3.00 (3H, m, CH_2Ar , CH), 2.30—1.92 (2H, m, $CH_2C=$), 2.14 (3H, s, CH₃), 1.70—1.18 (4H, m, CH₂), 1.11 (3H, d, J=7 Hz, CH₃), 1.08 (3H, d, J=7 Hz, CH₃), 0.99 (3H, s, CH_3), 0.36 (3H, s, CH_3); MS m/e (rel. intensity) 440 (m+, 1), 299 (M+-SO₂Ph, 69), 163 (81), 137 (71), 123 (100). Found: C, 73.66; H, 8.08%. Calcd for C₂₇H₃₆-O₃S: C, 73.60; H, 8.24%.

2-[2-(3-Isopropyl-4-methoxyphenyl) ethyl]-1,3,3-trimethylcyclohexene (6). To a solution of 132 mg of 5 in 2 ml of dry THF and 20 ml of liq. NH₃ was added 100 mg of potassium at -70 °C and the mixture was vigorously stirred at -70—65 °C for 2 h. After quenching with 1 ml of EtOH and evaporating the solvent under reduced pressure, 2 ml of saturated NH₄Cl was added to the residue and the organic substance was extracted with ether. The combined ether extracts were washed with saturated NaCl, dried (Na₂SO₄), and concentrated in vacuo. The residue was chromatographed (SiO₂, hexane-benzene/10:1), affording 6 (72 mg, 80%). Subsequent elution with hexane-AcOEt (10:1) provided 5 (10 mg, 8%): IR (neat) 2840 (MeO), 1610 (Ar), 1500,

1460, 1240 cm⁻¹; NMR (CDCl₃) δ 7.02 (1H, d, J=2 Hz, ArH), 7.00 (1H, dd, J=9 and 2 Hz, ArH), 6.75 (1H, d, J=9 Hz, ArH), 3.80 (3H, s, CH₃O), 3.28 (1H, sept, J=7 Hz, CH), 2.44—2.70 (2H, m, CH₂Ar), 2.10—2.37 (2H, m, CH₂), 1.82—2.02 (2H, m, CH₂), 1.67 (3H, s, CH₃C=), 1.30—1.72 (4H, m, CH₂), 1.22 (6H, d, J=7 Hz, CH₃), 1.05 (6H, s, CH₃); MS m/e 300 (M⁺, 8), 163 (100). Found: C, 84.04; H, 10.76%. Calcd for C₂₁H₃₂O: C, 83.94: H, 10.73%.

12-Methoxyabieta-8,11,13-triene (7). Into 46 mg of 6 was added a mixture of AcOH (1.8 ml) and concd H₂SO₄ (0.2 ml) under ice cooling. The reaction mixture was stirred vigorously at 5 °C for 5 min and at 15—18 °C for 20 h. After adding 5 ml of ice water, the organic substance was extracted with hexane-ether (1:5). The combined extracts were washed with saturated NaHCO₃ and saturated NaCl, dried (Na₂SO₄), and concentrated in vacuo. The residue was chromatographed (SiO₂, hexane-benzene 10:1), affording 7 (45 mg, 99%) as a mixture (6:4) of cis-7a and trans-7b. Both isomers were separated by VPC (SE-30, 3 m, 4φ, 210 °C) and identified in comparison with the reported spectral data.

Ferruginol (2). To a solution of 1.4 mg of **7b** in 1.5 ml of dry CH_2Cl_2 was added 10 mg of BBr_3 at -70 °C under stirring. The mixture was stirred for 1 h while the reaction temperature was allowed to rise to -30 °C and then at 15—18 °C for additional 1 h. After adding 0.02 ml of saturated NaHCO₃, the mixture was dried (Na₂SO₄) and concentrated under reduced pressure. The residue was chromatographed (SiO₂, benzene), affording 2 (1.1 mg, 84%) as a sole product. The NMR and IR spectra were consistent with those reported.

The authors are grateful to Messrs M. Oka and K. Nara, Kuraray Co., Ltd. for mass spectral analysis.

References

- 1) Part IV. K. Uneyama and S. Torii, *Chem. Lett.*, **1977**, 39.
- 2) S. M. Kupchan, A. Karim, and C. Marcks, *J. Am. Chem. Soc.*, **90**, 5923 (1968); S. M. Kupchan, A. Karim, and C. Marcks, *J. Org. Chem.*, **34**, 3912 (1969).
 - 3) K. Mori and M. Matsui, Tetrahedron, 26, 3467 (1970).
- 4) (a) T. Matsumoto, Y. Tachibana, J. Uchida, and K. Fukui, Bull. Chem. Soc. Jpn., 44, 2766 (1971); (b) T. Matsumoto Y. Ohsuga, and K. Fukui, Chem. Lett., 1974, 297.
- 5) T. Matsumoto and S. Usui, Preprint on the 36th National Meeting of the Chemical Society of Japan, Osaka, April (1977).
- 6) (a) C. W. Brandt and L. G. Neubauer, J. Chem. Soc., 1939, 1031; (b) W. P. Campbell and D. Todd, J. Am. Chem. Soc., 64, 928 (1942); (c) F. E. King, T. J. King, and J. G. Topliss, J. Chem. Soc., 1957, 573; (d) P. N. Rao and K. Raman, Tetrahedron, 4, 294 (1958); (e) W. L. Meyer, G. B. Clemans, and R. W. Hufman, Tetrahedron Lett., 1966, 4255; (f) J. Wolinsky, R. Lau, J. J. Hamsher, and C. M. Cimarusti, Synth. Commun., 2, 327 (1972); (g) W. L. Meyer, G. B. Clemans, and R. A. Manning, J. Org. Chem., 40, 3686 (1975).
- 7) S. Torii, K. Uneyama, and M. Ishihara, Chem. Lett., 1975, 479; S. Torii, K. Unayama, and M. Kuyama, Tetrahedron Lett., 1976, 1513; K. Uneyama and S. Torii, Tetrahedron Lett., 1976, 443.
- 8) M. Fetizon and G. Moreau, Bull. Soc. Chim. Fr., 1965, 3479.